ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Low-temperature sintering and microwave dielectric properties of Al₂TeO₆–TeO₂ ceramics

Isao Kagomiya ^{a,*}, Yuichiro Kodama ^a, Yukihiro Shimizu ^a, Ken-ichi Kakimoto ^a, Hitoshi Ohsato ^a, Yasuharu Miyauchi ^b

ARTICLE INFO

Article history: Received 12 March 2015 Received in revised form 28 March 2015 Accepted 30 March 2015 Available online 9 April 2015

Keywords: LTCC Microwave dielectric property Quality factor TeO₂ Al₂TeO₆

ABSTRACT

We propose Al₂TeO₆–TeO₂ ceramics as a candidate for use as low-temperature co-fired ceramics (LTCC). We investigated microwave dielectric properties and low-temperature sintering conditions for Al₂TeO₆–TeO₂ ceramics. The calcined Al₂TeO₆ powders were sintered at 900 °C for 2–10 h with 30–50 wt% additive TeO₂. X-ray powder diffraction patterns showed that the sintered samples were Al₂TeO₆–TeO₂ composite with no other phase. The apparent density was improved with the additive TeO₂ content of up to 45 wt%. The dielectric constant (ε_r) increased by adding TeO₂ content from 35 to 45 wt%, although the quality factor (Q · f) decreased. During sintering at 900 °C, the ε_r of the Al₂TeO₆–TeO₂ decreased slightly, whereas the Q · f increased gradually. The observed microstructures showed that the longer sintering time makes fewer pores in Al₂TeO₆–TeO₂ ceramics. Sintering at 900 °C for a long time contributes to densification, but it simultaneously causes TeO₂ evaporation. To prevent TeO₂ evaporation, we investigated the effects of annealing at 750 °C after sintering at 900 °C. Apparent densities or ε_r for the annealed samples were higher than those of the non-annealed samples. The Q · f improved with increasing annealing duration time, suggesting that sintering proceeded well during annealing with slower TeO₂ evaporation at 750 °C. The results show that annealing at 750 °C is effective to facilitate sintering and to control TeO₂ evaporation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, low-temperature co-fired ceramics (LTCC) have attracted attention for the development of next-generation miniaturized microwave/millimeterwave communication devices [1–10]. Using the LTCC, co-firing of dielectric ceramics with internal electrodes is possible, where silver is usually used for the electrode. Because the melting point of silver is approximately 961 °C in air [11], the sintering temperature for the dielectric ceramics must be lower than 961 °C. However, until now, almost all micro/millimeter-wave dielectric ceramics require sintering temperatures higher than 1000 °C to obtain a higher quality factor $(Q \cdot f)$, resulting from good densification and crystallinity [2,12–16]. Higher $Q \cdot f$ is an important factor for higher-frequency telecommuting applications such as filters and resonators [2]. This study was conducted to develop new dielectric ceramics

with a high quality factor, even though the sintering temperature of the ceramics is lower than 961 °C of the silver melting point.

We have proposed that ceramics based on Al₂TeO₆ are candidate compounds for the LTCC because they contain Te oxide, which is characterized by its low melting point. For example, the melting point of TeO₂ is approximately 730 °C [17]. Some studies have been reported that the Te based binaries such as TiO_2-TeO_2 , $Bi_2O_3-TeO_2$, and CuO-TeO₂ can be densified by sintering at temperatures lower than 900 °C [3-6,10]. Additionally, the Al based oxides tend to show lower dielectric constant [2,13,15,16]. Lower dielectric constant in addition to lower dielectric loss is also important for miniaturization of the higher-frequency telecommuting devises [2]. Su et al. have described that the Al₂TeO₆ possesses both of low-dielectric constant (ε_r) and dielectric loss $(\tan \delta)$ in the frequency range of 1 kHz-1 MHz [18]. The ε_r and the tan δ at 1 MHz have been reported as 9.4 and 0.03, respectively. That fact implies that the Al₂TeO₆ is also characterized by low-dielectric constant and dielectric loss in the microwave frequency range. However, no reports in the relevant literature describe studies of microwave dielectric properties in the Al₂TeO₆.

^a Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

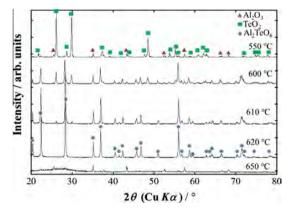
^b Systems, Acoustics, Waves Business Group TDK-EPC Corporation, 2-15-7, Higashiowada, Ichikawa-shi, Chiba 272-8558, Japan

^{*} Corresponding author. Tel./fax: +81 52 735 7368. E-mail address: kagomiya@nitech.ac.jp (I. Kagomiya).

Given that perspective, we tried earlier to prepare Al₂TeO₆ ceramic samples as a pilot study, but it was difficult to obtain dense ceramics, when the sample was sintered at temperatures below 960 °C. Not sintered sample, but the pressed sample was used to investigate the dielectric properties in the frequency range of 1 kHz-1 MHz in the literature [18]. It also presumes that preparing the sintered Al₂TeO₆ is difficult, because dielectric properties are usually investigated by using a sintered sample. Particularly, densification is more significant for the quality factor in the microwave frequency range. To overcome the difficulty, this study was undertaken to prepare dense Al₂TeO₆ ceramics by adding TeO₂ with the lower melting point. We investigated the low-sintering condition and crystallinity of Al₂TeO₆-TeO₂ ceramics. Then we investigated the microwave dielectric properties of the prepared samples and discussed relation between the sintering conditions and the microwave dielectric properties.

2. Experimental procedures

Al $_2O_3$ (purity: 99.99%) and TeO $_2$ (purity: 99.9%) were weighed as the mole ratio of 1:1. They were ball-milled for 24 h in ethanol solvent using alumina balls with 5 mm ϕ diameter. After drying, the mixed powders were calcined in air at 550–650 °C for 10 h. The calcined Al $_2O_3$ –TeO $_2$ powders were mixed with additional TeO $_2$ of 30–50 wt% and were again ball-milled for 24 h. The powders were molded into pellets with uniaxial pressure of approximately 7.8 MPa. Then cold isostatic pressing (CIP) of the molded samples was conducted under pressure of 200 MPa. The obtained pellets were sintered at 900 °C for 2–10 h in air. Some pellets were annealed at 750 °C for 24 h after sintering at 900 °C for 2 h.


The crystalline phase of the prepared sample was characterized at room temperature using X-ray powder diffraction (XRPD; X'pert MPD Pro; PANalytical B.V.) with Cu K α radiation, where the conditions of XRPD voltage and current were respectively 45 kV and 40 mA. The apparent densities of the prepared samples were measured using Archimedes' method. The microstructure images of the prepared samples were investigated using a scanning electron microscope (SEM; JSM-6330F; JEOL Inc.). Differential thermal analysis (DTA) and thermogravimetry (TG) were conducted at temperatures of 20–900 °C with a rate of 10 °C/min to investigate the weight change and the melting point of TeO2 in the samples.

The microwave dielectric properties of the prepared samples were investigated using the Hakki and Coleman method [2,19], for which a pellet sample was positioned between two copper plates. The microwave signal from the sample was investigated using a network analyzer (8720ES; Agilent Technologies Inc.). The dielectric constant (ε_r) and the quality factor $(Q \cdot f)$ were calculated using the TE_{011} resonant mode investigated at room temperature [2,19]. The temperature coefficient of the resonator frequency (τ_f) was investigated at temperatures of 20–80 °C.

3. Results and discussion

3.1. Calcination condition to synthesize Al₂TeO₆

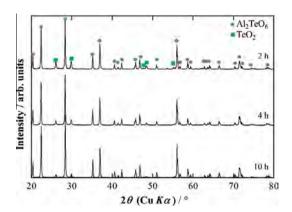
XRPD patterns of the Al_2O_3 -TeO₂ powders calcined at 550–650 °C for 10 h are presented in Fig. 1. When the calcination temperature was 550 °C, reflections corresponding to Al_2O_3 and

Fig. 1. XRPD patterns of the Al_2O_3 -TeO₂ calcined for 10 h at 550–650 °C.

tetragonal TeO₂ were observed. At the calcination temperature of 600 °C, reflections corresponding to Al₂TeO₆ appeared in addition to the Al₂O₃ and the TeO₂ reflections. With higher calcination temperatures, the reflection intensities of the TeO₂ and the Al₂O₃ decreased, whereas the Al₂TeO₆ reflection intensities increased. When the calcination temperature was 620 °C, only Al₂TeO₆ reflections were observed, indicating that single phase of Al₂TeO₆ is obtainable at this calcination temperature. The reported TGA has showed an endothermal peak related to the formation of Al₂TeO₆ at 620 °C [18], which is good agreement with this XRPD result. We confirmed that a broad XRPD peak was observed around $2\theta = 25^{\circ}$, coming from the presence of TeO₂ glass, when the Al₂O₃—TeO₂ powders were sintered at 650 °C. Consequently, we concluded that 620 °C is an appropriate condition for the calcination temperature for Al₂TeO₆.

3.2. Sintering condition to prepare dense Al₂TeO₆—TeO₂ ceramic samples

XRPD patterns of the sintered Al_2TeO_6 – TeO_2 samples are portrayed in Fig. 2, where the samples were prepared by sintering the calcined Al_2TeO_6 powders with additive 30–50 wt% TeO_2 at 900 °C for 2 h. The calcined temperature was 620 °C, as described above. The observed reflections of the sintered samples can be indexed by two phases: Al_2TeO_6 and tetragonal TeO_2 . With increasing additive TeO_2 contents, the TeO_2 reflection intensities increased slightly.


XRPD patterns of the Al_2TeO_6 with additive 40 wt% TeO_2 sintered at 900 °C for 2–10 h are depicted in Fig. 3. Reflections corresponding to Al_2TeO_6 and tetragonal TeO_2 were observed. With longer sintering duration time, the reflection intensities of the TeO_2 decreased gradually, suggesting that the TeO_2 is evaporated during sintering at 900 °C.

TG and DTA of the ${\rm Al_2TeO_6}$ with additive 40 wt% TeO₂ are presented in Fig. 4. In the DTA, the endothermic peak was observed at 707 °C, at which point the sample weight began to decrease. The results demonstrate that TeO₂ contained in the sample begins to melt at 707 °C.

The relations between apparent densities and the sample preparation conditions ((1) additive TeO_2 amount and (2) sintering duration time) are presented in Fig. 5. It is difficult to estimate the relative densities in the Al_2TeO_6 – TeO_2 composite series because TeO_2 is evaporated during sintering. In the case of the additive 30 wt% TeO_2 , the apparent density was the lowest among the samples in the case of additive TeO_2 of TeO_2 of TeO_3 wt%, when the sintering duration time was 2 h. With increasing the additive TeO_2 from 30 wt% to 45 wt%, the apparent density increased. The

Fig. 2. XRPD patterns of the $Al_2 TeO_6$ sintered for 2 h with additive TeO_2 of 30–50 wt% at 900 $^{\circ}\text{C}.$

Fig. 3. XRPD patterns of the Al_2TeO_6 sintered for 2–10 h with additive 40 wt% TeO_2 at 900 °C.

true density of TeO₂ was higher than that of Al₂TeO₆. This is a main reason for the improvement of the apparent density by adding the TeO₂. However, the apparent density of the sample with the additive 50 wt% TeO₂ sintered at 900 °C for 2 h was lower than those of samples with additive 35–45 wt% TeO₂, which suggests that a greater amount of the TeO₂ evaporation makes the density lower for the 50 wt% case. The apparent densities for the 30 wt% increased initially and then decreased with the sintering time, although the 40 and the 45 wt% cases are apparently almost constant with the sintering duration time. As discussed below, this behavior might be related to both grain rearrangement and TeO₂ evaporation during sintering.

SEM images of the samples obtained by sintering the calcined Al_2TeO_6 with different amount of TeO_2 are presented in Fig. 6, where the samples were prepared by sintering the calcined Al_2TeO_6 with (a) additive 30-, (b) 40- and (c) 50-wt% TeO_2 at 900 °C for 2 h. The sample in the 30 wt% case has many pores, suggesting that the sintering is not well proceeded. With adding further TeO_2 , the morphologies were obviously modified. Some

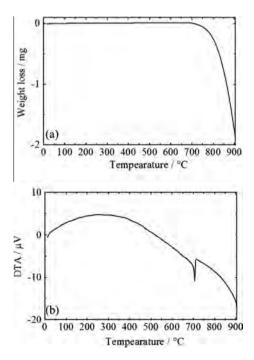


Fig. 4. Temperature dependence of the TG/DTA measurement of the Al_2TeO_6 with additive 40 wt% TeO_2 .

grains are rearranged and aggregated for the cases of the 40 wt% and the 50 wt%. No remarkable difference in morphologies was observed between the 40 wt% case and the 50 wt% case. The rearrangement of grains is one of characteristics of liquid phase sintering [20]. The results mean that the TeO₂ takes a role of a liquid phase for the sintering, because TeO₂ is already melt at 900 °C, as described before. In the case of the additive 30 wt%, the amount of the liquid TeO₂ is not enough to wet and rearrange the Al₂TeO₆ grains.

SEM images of the samples by sintering the calcined Al₂TeO₆ with additive 40 wt% TeO₂ at 900 °C for (a) 2 h, (b) 3 h and (c) 5 h are portrayed in Fig. 7. With sintering duration time, the further rearrangement process seems to be proceeded. The rearrangement improves densification in this system. Thus the additional TeO₂ serves an important role in the densification of Al₂TeO₆–TeO₂ composite ceramics. However, pores were still observed in Fig. 7(c). As mentioned above, a part of TeO₂ is evaporated during heating at 900 °C. The evaporation makes further densification difficult. In Section 3.4, we will discuss a strategy to overcome this problem.

3.3. Microwave dielectric properties of the prepared Al_2TeO_6 — TeO_2 samples

The relation between the dielectric constant ε_r and the preparation conditions ((1) additive TeO₂ amount and (2) sintering duration time) is presented in Fig. 8. The ε_r was investigated from the TE₀₁₁ resonance mode observed at 13-14.5 GHz, depending on the preparation conditions. When the additive TeO₂ amount was 30 wt% and the sintering duration time was 2 h, ε_r was lower than those of the other prepared samples. Fig. 6(a) shows that the low ε_r resulted from poor densification of the sample. With an increasing amount of additional TeO₂ from 35 to 45 wt%, the ε_r increased slightly if one specifically examines the sintering duration time of 2 h. This fact suggests that the ε_r of the TeO₂ at about 13 GHz is higher than that of the Al_2TeO_6 . Reportedly, that ε_r of TeO_2 is 19.3 at 4 GHz [3], which is higher than those of the Al₂TeO₆-TeO₂ composites in this study. As shown in the case of Al₂TeO₆, with additive TeO₂ of 35 or 40 wt%, the ε_r seems to decrease slightly with increasing sintering duration time from 2 h to 10 h. The TeO₂ evaporation is expected to contribute to the ε_r decrease.

The relation between quality factor $(Q \cdot f)$ and the preparation conditions is presented in Fig. 9. The $Q \cdot f$ of the sample prepared with the condition: additive TeO_2 amount of 30 wt%, the sintering duration time of 2 h is the lowest among the prepared samples, resulting from the poor densification. If we specifically examined

Fig. 5. Apparent densities of the prepared samples, where the calcined Al_2TeO_6 powders were sintered with the additive TeO_2 of 30–50 wt% at 900 °C for 2–10 h.

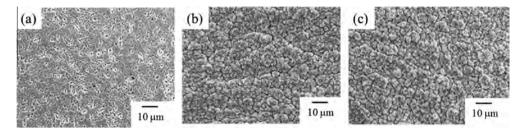
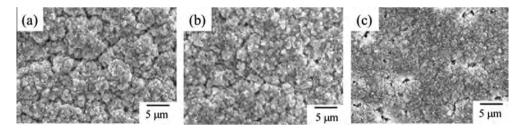
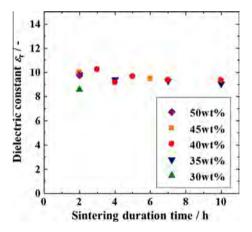
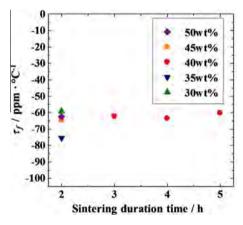
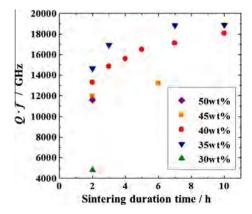


Fig. 6. SEM images of samples prepared by sintering the calcined Al_2TeO_6 with (a) additive 30 wt% TeO_2 at 900 °C for 2 h, (b) additive 40 wt% TeO_2 at 900 °C for 2 h, and (c) additive 50 wt% TeO_2 at 900 °C for 2 h.


Fig. 7. SEM images of samples prepared by sintering the calcined Al_2TeO_6 with additive 40 wt% TeO_2 at 900 °C for (a) 2 h, (b) 3 h and (c) 5 h.

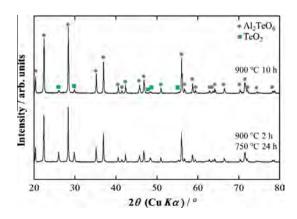

Fig. 8. Relation between dielectric constant ε_r and the preparation conditions ((1) additive TeO₂ amount and (2) sintering duration time), where the samples were sintered at 900 °C.

Fig. 10. Relation between τ_f and the preparation conditions ((1) additive TeO₂ amount and (2) sintering duration time), where the samples were sintered at 900 °C.

Fig. 9. Relation between quality factor and the preparation conditions ((1) additive TeO_2 amount and (2) sintering duration time), where the samples were sintered at $900 \, ^{\circ}C$

Fig. 11. XRPD pattern of the sample (Al $_2$ TeO $_6$ with 40 wt% additive TeO $_2$) annealed at 750 °C for 24 h after sintering at 900 °C for 2 h. XRPD patterns of the sample sintered at 900 °C for 10 h (non-annealed sample) is also shown.

Table 1 Dielectric properties and the apparent density of the 40 wt% TeO_2 -Al₂ TeO_6 without and with annealing at 750 °C after sintering at 900 °C. The f_0 is the resonant frequency of the TE_{011} mode.

Sintering temp. (°C)	Sintering time (h)	Annealing temp. (°C)	Annealing time (h)	f_0 (GHz)	$Q \cdot f(GHz)$	ε_r	Density (g/cm ³)
900	2	_	-	13.1	13,289	9.9	4.89
900	10	-	_	13.9	18,062	9.4	4.99
900	2	750	24	13.3	24,325	10.2	5.08

the preparation conditions: the additive TeO_2 amount of 35 and 40 wt%, $Q \cdot f$ for the 35 wt% case was higher than that for the 40 wt%. Although the apparent density was almost identical, which suggests that the $Q \cdot f$ of $AITe_2O_6$ is higher than that of TeO_2 . With increasing sintering duration time, $Q \cdot f$ increased gradually, as shown in the 35 or 40 wt% case. One reason for the increase is TeO_2 evaporation. Another reason is densification during maintenance of the temperature at 900 °C. Based on the results of the apparent densities, the ε_r , and the $Q \cdot f$, we presume that both densification and TeO_2 evaporation proceeded during heating at 900 °C.

The relation between τ_f and the preparation conditions is presented in Fig. 10. The τ_f values are in the range of -60 to -75 ppm/°C. No remarkable differences were investigated in the sample preparation conditions: (1) additives TeO_2 amount and (2) sintering duration time.

3.4. Effects of annealing at 750 $^{\circ}\text{C}$ on densification and microwave dielectric properties

As described above, sintering at 900 °C for a long time contributed to densification. However, longer duration times for sintering caused TeO₂ evaporation. To overcome this problem, we investigated an annealing effect after sintering at 900 °C for 2 h. The XRPD pattern of the sample (Al₂TeO₆ with additive 40 wt% TeO₂) annealed at 750 °C for 24 h after sintering at 900 °C for 2 h is presented in Fig. 11. For comparison, XRPD of the sample sintered at 900 °C for 10 h is also shown. After annealing, no other secondary phase or no peak shift was observed, suggesting that influence of annealing on reduction or oxidation is small in this composite system. The TeO₂ reflection intensities of the annealed samples were higher than that of the sample sintered at 900 °C for 10 h. The result supposes that the annealing is effective to make TeO₂ evaporation slower. Apparent densities and dielectric constants of the annealed samples were compared to those of the non-annealing samples. The results are tabulated in Table 1. The $Q \cdot f$ in the case of the annealing at for 24 h was higher than in the non-annealing sample sintered at 900 °C for 10 h. Apparent densities and dielectric constants for the annealing sample were higher than those of the non-annealing samples. These facts suggest that sintering proceeded well during annealing because of the slower TeO2 evaporation at 750 °C than at 900 °C. The sintering proceeding during slower TeO₂ evaporation contributes to higher quality factors.

4. Conclusions

We investigated a low-temperature sintering condition for Al_2TeO_6 – TeO_2 ceramics and their microwave dielectric properties. Heating temperature of 620 °C is an appropriate condition to prepare the Al_2TeO_6 calcined powders. The calcined Al_2TeO_6 powders were sintered with 30–50 wt% additive TeO_2 at 900 °C for 2–10 h. XRPD patterns showed that the sintered samples were Al_2TeO_6 – TeO_2 composite with no other phase. The apparent density was improved by adding the TeO_2 of up to 45 wt%. Particularly, the apparent density of Al_2TeO_6 with an additive 40 or 45 wt% TeO_2 was higher among the prepared samples sintered at 900 °C for 2 h. The dielectric constant ε_r of the Al_2TeO_6 – TeO_2 composite

increased slightly with TeO₂ content from 35 to 45 wt%, suggesting that the ε_r of TeO₂ is higher than that of Al₂TeO₆. The $Q \cdot f$ of the Al₂TeO₆-TeO₂ composite decreased with TeO₂ content from 30 to 45 wt%, suggesting that the $Q \cdot f$ of TeO₂ is lower than that of Al₂TeO₆. During sintering at 900 °C, the ε_r of the Al₂TeO₆–TeO₂ decreased slightly, whereas the $Q \cdot f$ increased gradually. As shown in the SEM image, the longer sintering time makes pores fewer and denser the Al₂TeO₆-TeO₂ ceramics. These facts mean that the sintering at 900 °C for a long time contributed to densification, however, simultaneously causing the TeO₂ evaporation. To prevent the TeO₂ evaporation, we investigated effects of annealing at 750 °C for 24 h after sintering at 900 °C. Apparent densities or ε_r for the annealing samples were higher than those of the non-annealing samples. The $Q \cdot f$ was improved by annealing, suggesting that sintering proceeded well during annealing because of slower TeO2 evaporation at 750 °C.

References

- J.-W. Sheen, A compact semi-lumped low-pass filter for harmonics and spurious suppression, IEEE Microwave Guided Wave Lett. 10 (2000) 92–93.
- [2] M.T. Sebastian, Dielectric Materials for Wireless Communication, Elsevier Science, Netherlands, 2008.
- [3] M. Udovic, M. Valant, D. Suvorov, Dielectric characterisation of ceramics from the TiO₂–TeO₂ system, J. Eur. Ceram. Soc. 21 (2001) 1735–1738.
- [4] M. Udovic, M. Valant, D. Suvorov, Phase formation and dielectric characterization of the Bi₂O₃-TeO₂ system prepared in an oxygen atmosphere, J. Am. Ceram. Soc. 87 (2004) 591–597.
- [5] D.-K. Kwon, M.T. Lanagan, T.R. Shrout, Synthesis of BaTiTe₃O₉ ceramics for LTCC application and its dielectric properties, J. Ceram. Soc. Jpn. 113 (2005) 216–219.
- [6] D.-K. Kwon, M.T. Lanagan, T.R. Shrout, Microwave dielectric properties and low-temperature cofiring of BaTe₄O₉ with aluminum metal electrode, J. Am. Ceram. Soc. 88 (2005) 3419–3422.
- [7] S. Lei, H. Fan, W. Chen, Effects of CaO-B₂O₃ glass addition on the low-temperature sintering and cation ordering in Sr_xLa_(1-x)Ti_xAl_(1-x)O₃ ceramics, J. Alloys Comp. 632 (2014) 78–86.
- [8] C.F. Tseng, P.-H. Chen, P.-A. Lin, Low temperature sintering and microwave dielectric properties of Zn_{0.5}Ti_{0.5}NbO₄ ceramics with ZnO additive for LTCC applications, J. Alloys Comp. 632 (2014) 810–815.
- [9] A. Sayyadi-Shahraki, E. Taheri-Nassaj, S.A. Hassanzadeh-Tabrizi, H. Barzegar-Bafrooei, A new temperature stable microwave dielectric ceramic with low-sintering temperature in Li₂TiO₃-Li₂Zn₃Ti₄O₁₂ system, J. Alloys Comp. 597 (2014) 161–166.
- [10] X. Zhu, Z. Wang, X. Su, P.M. Vilarinho, New Cu₃TeO₆ ceramics: phase formation and dielectric properties, ACS Appl. Mater. Interfaces 6 (2014) 11326–11332.
- [11] L.H. Cohen, W. Klement Jr., G.C. Kennedy, Melting of copper, silver, and gold at high pressures, Phys. Rev. 145 (1966) 519–525.
- [12] H. Ohsato, M. Terada, I. Kagomiya, K. Kawamura, K. Kakimoto, E.S. Kim, Sintering conditions of cordierite for microwave/millimeterwave dielectrics, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (2008) 1081–1085.
- [13] I. Kagomiya, Y. Matsuda, K. Kakimoto, H. Ohsato, Microwave dielectric properties of YAG ceramics, Ferroelectrics 387 (2009) 1–6.
- [14] I. Kagomiya, J. Sugihara, K. Kakimoto, H. Ohsato, Mg₂SiO₄-TiO₂ composite ceramics prepared using a liquid phase deposition process, J. Electroceram. 22 (2007) 327–333.
- [15] Y. Miyauchi, Y. Ohishi, S. Miyake, H. Ohsato, Improvement of the dielectric properties of rutile-doped Al₂O₃ ceramics by annealing treatment, J. Eur. Ceram. Soc. 26 (2006) 2093–2096.
- [16] Y. Miyauchi, I. Kagomiya, Y. Ohishi, H. Ohsato, The improvement of microwave dielectric properties on Al₂O₃ ceramics, Ferroelectrics 387 (2009) 46–53.
- [17] C. Neamtt, A.L. Darabont, G.H. Borodi, Crystal growth and electrical properties of TeO₂ single crystals, J. Optoelect. Adv. Mater. 2 (2000) 487–492.
- [18] X. Su, A. Wu, P.M. Vilarinho, Al₂TeO₆: mechanism of phase formation and dielectric properties, Scripta Mater. 67 (2012) 927–930.
- [19] B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive in the millimeter range, IRE Trans. Microwave Theory Tech. MTT 8 (1960) 402–410.
- [20] R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering, J. Mater. Sci. 44 (2009) 1–39.